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It is well known that thermal fluctuations and material impurities affect the mo-
tion of vortices in superconductors. These effects are modeled by variants of a
time-dependent Ginzburg–Landau model containing either additive or multiplica-
tive noise. Numerical computations are presented that illustrate the effects that noise
has on the dynamics of vortex nucleation and vortex motion. For an additive noise
model with relatively low variances, it is found that the vortices form a quasi-steady-
state lattice in which the vortex core sizes remain roughly fixed but their positions
vibrate. Two multiplicative noise models are considered. For one model having rel-
atively long-range order, the sizes of the vortex cores vary in time and from one
vortex to another. Finally, for the additive noise case, we show that as the variance
of the noise tends to zero, solutions of the stochastic time-dependent Ginzburg–
Landau equations converge to solutions of the corresponding equations with no
noise. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The mathematical and computational study of phenomenological Ginzburg–Landau mod-
els for low-temperature superconductivity has received much attention in recent years.
The partial differential equations which define the models involve the complex-valued or-
der parameter ψ , the vector-valued magnetic potential A, and the scalar-valued electric
potential �. Recent studies have provided rigorous justifications concerning the vortex
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state in type-II superconductors which were previously understood only based on physical
heuristics and observations. However, the mathematical formulations of the conventional
Ginzburg–Landau theory are applicable only to highly idealized physical contexts that do
not take into account factors such as inhomogeneities, thermal fluctuations, and random
applied fields. For example, it is well known that thermal fluctuations and material de-
fects play a central role in the pinning of vortices in type-II superconductors [16, 21]. It
is also well known that as the temperature approaches the transition temperature and the
effect of thermal fluctuations increases, the vortex lattice melts and there is a transition to a
vortex-liquid state; see [17] for recent convincing experimental evidence. Thus, studies of
the stability, dynamics, interactions, and other properties of the vortex state based on deter-
ministic Ginzburg–Landau models do not necessarily carry over to situations for which the
above factors cannot be ignored.

In this paper, we develop and apply computational methods that can be used to determine
the effects of random thermal fluctuations and material defects on the vortex dynamics in
type-II superconductors. The algorithms are based on stochastic versions of the Ginzburg–
Landau model. For simplicity, we assume that the underlying material sample possesses
a large value for the Ginzburg–Landau parameter κ so that a reduction of the Ginzburg–
Landau equations to their high-κ limit can be employed [2, 8]. This implies that the given
applied field penetrates the sample completely, i.e., the induced field is equal to the applied
field and is independent of the sample properties. We will consider different forms for the
noise in the high-κ limit model. We will then develop algorithms for discretizing the noise
and illustrate, through numerical experiments, their effect on the dynamics of the nucleation
of vortices.

The paper is organized as follows. In the remainder of this section, we discuss some
notions about random fields and stochastic processes. In Section 2, we introduce stochastic
variants of the high-κ Ginzburg–Landau model which involve either additive or multiplica-
tive noise. In Section 3, we discuss the discretization of noise. Then, in Section 4, we present
the results of some numerical experiments with additive noise models and, in Section 5,
we do likewise for multiplicative noise models. In Section 6, we examine the large time
behavior of the vortex motion and, in Section 7, we look at theoretical issues related to the
large time behavior and the small variance limit of such motions. Finally, in Section 8, we
give a summary of our findings and some concluding remarks.

1.1. Random Fields and Stochastic Processes

In n-dimensional space, locations are denoted by a vector v = (v1, . . . , vn) whose ele-
ments are coordinates or parameters. A random field can be viewed as an indexed family
of random variables. The value of a random field at the location v in parameter space is a
random variable. The collective outcome of all experiments comprising the random field
is the realization of the random field, and its value is the observed outcome at the point v
where the random field is realized. The outcome of the random variable associated with any
location v is also referred to as the state of the random field at that location.

We use two types of realizations for random fields.

1. Continuous random functions: if observations are made at all points along one or more
spatial coordinate axes (x1, x2, . . . , xd ) and/or the time axis t .

2. Lattice processes: if observations are made at the nodes or sites of a discrete lattice in
space/time.
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We take n-dimensional space to be R
d+1 to analyze the time-dependent Ginzburg–Landau

equations, with d denoting the space dimension (d = 2, 3). A continuous random process
is used in the strong and weak forms of the Ginzburg–Landau equations with noise that
accounts for thermal fluctuations and random material effects, while the lattice process is
used in the discretized weak form of the Ginzburg–Landau equations.

2. HIGH κ GINZBURG–LANDAU MODELS WITH NOISE

In the time-dependent high-κ model [8], the resulting simplified leading-order system is a
nonlinear, complex-valued equation for the leading-order (in terms of 1/κ2) order parameter
ψ0, where κ denotes the Ginzburg–Landau parameter which is a material property. Most
superconductors of practical use have “high” values for κ . The time-independent magnetic
potential A0 is solved for separately from the given applied field H0 using Maxwell’s
equations. Thus, throughout, we can assume that A0 is a given, deterministic vector field.

The derivation of the high-κ model in the deterministic setting starts with the well-known
time-dependent Ginzburg–Landau equations [22]. Then, the limit as the Ginzburg–Landau
parameter κ goes to infinity is considered, with the applied field assumed to be of order κ .
A gauge choice of the type � = 0 (where � denotes the electric potential) in the sample
and A · n = 0 on the boundary of the sample is invoked. The applied current is assumed to
be small so that it has no effect on the leading-order behavior of the order parameter. The
resulting high-κ model (see [2, 8] for details) is then given by

∂ψ0

∂t
+ (i∇ + A0)

2ψ0 − ψ0 + |ψ0|2ψ0 = 0 in � (1)

(i∇ + A0)ψ0 · n = 0 on  (2)

ψ0(x, 0) = ϕ(x) in �, (3)

where � ∈ R
d denotes the superconducting sample and  its boundary. Later, we will drop

the subscript 0 that denotes the leading-order variables.
Although at each point in the material and at each instant in time thermal fluctuations or

material defects may have a negligible effect, the superposition of many interactions can
produce observable effects. The movement of a particular vortex cannot be found exactly;
thus, the motion is described statistically. Fluctuations and defects, being random in nature,
produce instantaneous changes in the movement of the vortex. In [21], it is argued that these
thermodynamic fluctuations are generally quite small which correspond to a small value
for the variance. The same could be argued in the case of random material defects.

Noise may be added to the high-κ model in different ways. Here, we consider two
approaches: the cases of additive and multiplicative noise. The comparison of these two
types of noise models in other physically meaningful systems has received much attention;
see, e.g., [15].

2.1. Additive Noise High-κ Model

The additive noise high-κ Ginzburg–Landau model that we use is a simple modification
of the deterministic high-κ Ginzburg–Landau model (1)–(3). Following [14], we introduce
into the right-hand side of (1) a random, continuous, complex-valued field in time and space.
In this way, thermal fluctuations are modeled by Langevin-type dynamics. More detailed
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physical interpretations of additive noise random fields can be found in [14, 20]. Thus, the
additive noise high-κ Ginzburg–Landau model is given by

∂ψ

∂t
+ (i∇ + A)2ψ − ψ + |ψ |2ψ = η in � (4)

(i∇ + A)ψ · n = 0 on  (5)

ψ(x, 0) = ϕ(x) in �, (6)

where η is a random, continuous, complex-valued field in time and space. In the context of
Ginzburg–Landau models, the additive noise-induced Langevin dynamics have been studied
in [6, 13, 23, 24] in which analytical methods are used to study the transition between the
disordered vortex-lattice and normal states; these papers do not specifically monitor the
vortex-liquid state which is intermediate between the vortex-glass and normal states. In this
paper, we use computational techniques to study the details of the full transition through
the vortex-glass, vortex-liquid, and normal states as the temperature is increased.

The random source term η is assumed to be noise generated by an infinite-dimensional
Brownian motion; see [4] for a more precise definition. If this stochastic term is meant
to model the effects of thermal fluctuations, then its variance σ is, of course, temperature
dependent. In fact, we have that σ = K (T/Tc)(1 − T/Tc)

−2, where T and Tc denote the
temperature and the critical transition temperature, respectively, and K is a temperature-
independent constant. (Using the experimental results of [17], one can glean that, very
roughly, K ≈ 1/80.) Note that the variance tends to infinity as T → Tc, which is to be
expected; i.e., when the temperature is very close to the transition temperature, the effects
of thermal fluctuations should be large.

We note that in the system (4)–(6), the space variables have been nondimensionalized with
respect to the temperature-dependent coherence length, i.e., with respect to ξ(T ) = ξ(0)(1 −
T/Tc)

−1/2. In our computational simulations, we will vary the variance of the noise or,
equivalently, we will vary the temperature. As a result, because of our nondimensionalization
scale, changing the variance implies that we are also changing ξ . This means that as we
change the value of variance, the spatial scale used for nondimensionalization changes. The
relation between ξ and σ is easily found to be (ξ(T )/ξ(0))2 = (1 + √

1 + 4σ/K )/2 so that
for large values of σ we have that ξ(T ) ∝ σ 1/4. Thus, for example, doubling the variance in
our computational simulations means that, for large variances, we are enlarging the linear
dimension of the material sample by a factor of 1.19. It should be noted that the scale used
for nondimensionalizing the time is also temperature dependent.

The set of time-dependent equations (4)–(6) for ψ is now nondeterministic in nature. The
resulting equation for ψ with additive noise can also be given in the abstract form

du(t) = Â(u(t)) dt + σ dW (t) (7)

along with the initial condition

u(0) = ϕ, (8)

where u(t) = ψ(t); Â is the operator Â = Â0 + F , where

F(u) = u − |u|2u (9)
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is a monotone nonlinear operator and Â0 is a linear differential operator defined by

Â0u = (∇ − iA)2u (10)

for u satisfying

(∇ − iA)u · n = 0 on . (11)

In (7), σ is a positive parameter and W (t) denotes a Hilbert space-valued Wiener pro-
cess. This abstract form of the time-dependent Ginzburg–Landau equations with thermal
fluctuations will be studied in Section 7.

2.2. Multiplicative Noise High-κ Model

The multiplicative noise model we study corresponds to the following abstract form:

du(t) = Â(u(t)) dt + σu(t) dW (t). (12)

Physically, multiplicative noise has been used to model the effects of the inhomogeneity
of the effective interactions between electrons; for details, see, e.g., [16]. In the high-κ
Ginzburg–Landau setting, the corresponding stochastic model is given by

∂ψ

∂t
+ (i∇ + A)2ψ − ψ + |ψ |2ψ = ηψ in � (13)

(i∇ + A)ψ · n = 0 on  (14)

ψ(x, 0) = ϕ(x) in �, (15)

Again, the variance of the noise coefficient η is inversely related to the difference between
the temperature and the critical temperature of transition between the superconducting and
normal states.

If the noise coefficient η models defects in the material sample, then the nature of the
noise depends on the scale of the inhomogeneities. If these are smaller than a Ginzburg–
Landau coherence length ξ , one may assume that η is independent in space and time. On the
other hand, if the inhomogeneities are correlated over distances comparable to a coherence
length, then the coefficient η should have a similar correlation length scale.

If the noise coefficient η models the effects of thermal fluctuations, then it is not clear what
the nature of the noise should be. Furthermore, it is not clear if multiplicative noise models
satisfy the fluctuation–dissipation theorem; see [14]. Indeed, one of the goals of this paper
is to develop computational algorithms that can be used to examine the effects of different
noise models on the dynamics of vortices. Hopefully, by examining those dynamics one
can gain some insight into which noise models are likely to be correct.

3. DISCRETIZED NOISE MODELS

The noise models we have introduced involve continuous random functions in space
and time. To carry out some computational simulations, we must discretize these random
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functions. Relevant to the following discussion is the observation that the high-κ Ginzburg–
Landau model we are using has been nondimensionalized with respect to the Ginzburg–
Landau coherence length ξ so that unit distances in that model correspond to a coherence
length scale.

For the additive noise model we have assumed that η is independent in space and time.
As a result, for that model we approximate η by a grid function whose nodal values at all
grid points and time steps are sampled as independent random variables with a Gaussian
distribution of zero mean and variance σ . Consequently, if one refines the grid used for the
solution of (4)–(6) one also refines the sampling points for the approximation of η.

For the numerical approximation of the multiplicative noise model, we will use two
types of discretized noise. First, we will use a discretized noise similar to that used in the
additive noise case. This models noise that is correlated over length scales smaller than the
coherence lenght. We will also use discretized noise that is sampled on a lattice that is fixed
with respect to the grid used to discretize (13)–(15). This models noise that is correlated
over length scales comparable to the coherence length.

We now give some additional details concerning the discretization of noise in the context
of finite element methods.

3.1. Discretization of Space–Time-Independent Additive Noise

We discuss the discretization of space–time-independent noise in the additive noise case.
For a thorough discussion of finite element discretizations of deterministic Ginzburg–
Landau models, see [7, 9, 10]. Here we will only discuss issues directly relevant to the
introduction of noise into Ginzburg–Landau models.

To effect a finite element discretization of (4)–(6), we choose a finite element space V h

with basis {φh
j (x)}J

j=1, e.g., continuous piecewise quadratic polynomials with respect to a
triangulation of �. At each time step n = 0, 1, 2, . . . , we seek an approximate solution of
the form

ψ
(n)
h (x) =

J∑
j=1

c(n)
j φh

j (x),

where, for each n, {c(n)
j }J

j=1 is the set of complex-valued coefficients to be determined. Thus,
we have that

ψ
(n)
h (x) ≈ ψ(x, n�t) for x ∈ �.

For n = 0, we determine {c(0)
j }J

j=1 from the initial condition ψ(x, 0) = ϕ(x).
For n = 1, 2, . . . , we determine {c(n)

j }J
j=1 from the discretized weak form of (4)–(6), i.e.,

from

∫
�

(
ψ

(n)
h − ψ

(n−1)
h

�t
, ψ̃∗

h

)
d� +

∫
�

(
i∇ψ

(n)
h + Aψ

(n)
h

) · (−i∇ψ̃∗
h + Aψ̃∗

h) d�

−
∫

�

(
ψ

(n)
h + ∣∣ψ(n)

h

∣∣2ψ(n)
h

)
ψ̃∗

h d�

=
∫

�

η
(n)
h ψ̃∗

h d� ∀ψ̃h∈V h, (16)



GINZBURG–LANDAU SUPERCONDUCTIVITY MODEL 51

where we have used a backward Euler discretization in time. Actually, the integrals in (16)
are not evaluated exactly, but instead, quadrature rules are used; for example, we would use
the approximation

∫
�

η
(n)
h ψ̃∗

h d� ≈
E∑

e=1

Q∑
q=1

we,qη
(n)
h (xe,q)ψ̃

∗
h(xe,q),

where E is the number of triangles, e = 1, . . . , E is an indexing of the triangles, Q is
the number of quadrature points in each triangle, we,q for q = 1, . . . Q are the quadrature
weights in triangle e, and xe,q for q = 1, . . . Q are the quadrature points in triangle e.

One way to discretize the noise is given by

η
(n)
h (x) =

J∑
j=1

ν
(n)
j φh

j (x), (17)

where, for each j and each n, ν
(n)
j is chosen randomly from a Gaussian distribution with

mean zero and variance σ . Essentially, at each time step n, a new set of nodal values {ν(n)
j }J

j=1

is chosen randomly from the Gaussian distribution; the values of the noise at other points
in � are then determined by interpolation through (17). As a result, the noise term in the
discrete equation (16) is approximated by

∫
�

η
(n)
h ψ̃∗

h d� ≈
E∑

e=1

Q∑
q=1

J∑
j=1

we,qν
(n)
j φh

j (xe,q)ψ̃
∗
h(xe,q).

Note that when one refines the temporal and/or spatial grid one also refines the sampling
points for ν

(n)
j .

An alternate way to discretize the noise is given by

η
(n)
h (xe,q) = µ(n)

e,q , (18)

where for each time step n, each triangle e, and each quadrature point q, µ(n)
e,q is chosen

randomly from a Gaussian distribution with mean zero and varianceσ . Now, at each time step
n, we are choosing the noise randomly from the Gaussian distribution at each quadrature
point in each triangle. Thus, the noise term in the discrete equations is now approxima-
ted by

∫
�

η
(n)
h ψ̃∗

h d� ≈
E∑

e=1

Q∑
q=1

we,qµ
(n)
e,qψ̃

∗
h(xe,q).

Again, when one refines the temporal and/or spatial grids one also refines the sampling
points for µ(n)

e,q . In fact, the two ways (17) and (18) of discretizing noise discussed so far
are basically equivalent; i.e., in both cases, the distribution is sampled at points and times
whose spacing is determined by the grids used in the discretization of the partial differential
equations. Thus, as the spacial and temporal grids are refined, the distribution is sampled on
commensurately finer scales. Furthermore, the two methods yield very similar numerical
results.



52 DEANG, DU, AND GUNZBURGER

3.2. Discretization of Space–Time-Independent and Correlated
Multiplicative Noise Models

If the multiplicative noise coefficient η is assumed to be independent in space and time,
it can be discretized in the same ways as those used for additive noise in Section 3.1. In this
case, we have that the finite element approximation of (13)–(15) is determined from

∫
�

(
ψ

(n)
h − ψ

(n−1)
h

�t
, ψ̃∗

h

)
d� +

∫
�

(
i∇ψ

(n)
h + Aψ

(n)
h

) · (−i∇ψ̃∗
h + Aψ̃∗

h) d�

−
∫

�

(
ψ

(n)
h + ∣∣ψ(n)

h

∣∣2ψ(n)
h

)
ψ̃∗

h d�

=
∫

�

η
(n)
h ψ

(n)
h ψ̃∗

h d� ∀ψ̃h∈V h, (19)

where the discretized noise coefficient η
(n)
h is given by either (17) or (18). Thus, when a

quadrature rule is used to approximate the integrals in (19), the right-hand side is respectively
approximated by

∫
�

η
(n)
h ψ

(n)
h ψ̃∗

h d� ≈
E∑

e=1

Q∑
q=1

J∑
j=1

we,qν
(n)
j φh

j (xe,q)ψ
(n)
h (xe,q)ψ̃

∗
h(xe,q),

where, for each time step n and for each node j , ν(n)
j is chosen randomly from the Gaussian

distribution, or

∫
�

η
(n)
h ψ

(n)
h ψ̃∗

h d� ≈
E∑

e=1

Q∑
q=1

we,qµ
(n)
e,qψ

(n)
h (xe,q)ψ̃

∗
h(xe,q),

where, for each time step n and for each quadrature point xe,q , µ(n)
e,q is chosen randomly

from a Gaussian distribution.
If the multiplicative noise coefficient η is assumed to be correlated over scales commen-

surate with the coherence length, then the space–time grid used to discretize the noise is
chosen to be fixed with respect the space–time grid used to discretize the partial differential
equation. Then, (19) is replaced by

∫
�

(
ψ

(n)
h − ψ

(n−1)
h

�t
, ψ̃∗

h

)
d� +

∫
�

(
i∇ψ

(n)
h + Aψ

(n)
h

) · (−i∇ψ̃∗
h + Aψ̃∗

h) d�

−
∫

�

(
ψ

(n)
h + |ψ(n)

h |2ψ(n)
h

)
ψ̃∗

h d�

=
∫

�

ηĥ.�̂tψ
(n)
h ψ̃∗

h d� ∀ψ̃h∈V h . (20)

In (20), ĥ and �̂t denote the space–time grid used to discretize the noise coefficient η; they
are chosen on a scale comparable to the coherence length. If h and �t are the spatial and
temporal grid sizes used to discretize (13)–(15), then these are small compared with the
coherence length; i.e., h � ĥ and �t � �̂t .

In (20), the discrete noise ηĥ,�̂t (x, t) could be defined by sampling a Gaussian distribution
at times n̂�̂t , n̂ = 0, 1, 2, . . . , and at the nodes of a finite element grid having grid size ĥ;



GINZBURG–LANDAU SUPERCONDUCTIVITY MODEL 53

at other times and at other spatial points, the noise is then determined by interpolation. For
example, let µ̂,n̂ be the value of the noise sampled at the time n̂�̂t and at the ̂ th node
of the finite element grid used to discretize the noise. Then, if finite element interpolation
is used in space and piecewise linear interpolation is used in time, we would have that the
discretized noise appearing on the right-hand side of (20) is given by, for n̂ = 0, 1, 2, . . .,

ηĥ,�̂t (x, t) =
̂∑

̂=1

(
(t − tn̂+1)µ̂,n̂+1 + (tn̂ − t)µ̂,n̂

�̂t

)
φ̂ ĥ

̂ (x) for t ∈ [tn̂, tn̂+1],

where tn̂ = n̂�̂t , and {φ̂ ĥ
̂ (x)}̂̂=1 is a basis for the finite element space V ĥ used to discretize

the noise. We can now introduce quadrature rules to evaluate the integrals appearing in (20).
The finite element space used to discretize the noise is not the same as that used to

discretize the partial differential equation; i.e., V h �= V ĥ . In fact, we take the view that the
spatial grid and time step used to discretize the noise are fixed with respect to refinements
of the spatial grid and time step used to discretize the partial differential equation. In this
approach to discretizing noise, one can determine the discretized noise before one begins
the computation of the approximate solution of the partial differential equation.

4. SIMULATIONS INVOLVING SPACE–TIME-INDEPENDENT ADDITIVE NOISE

The numerical computations are based on a code developed for the steady-state and
time-dependent Ginzburg–Landau models and several of their variants; see [2, 5, 9, 10,
11]. Piecewise quadratic finite element spaces on uniform meshes are used in space while
a backward Euler scheme is used in the time discretization. In the figures, contour lines
for the magnitude of the order parameter ψ are plotted. The square of the magnitude
of the order parameter is proportional to the density of superconducting charge carriers;
thus, |ψ | = 0 then corresponds to the normal, i.e., nonsuperconducting, state and, in our
nondimensionalization, |ψ | = 1 corresponds to the superconducting state. Values in between
correspond the “mixed state.” Only those contour lines corresponding to |ψ | ≤ 0.5 are
shown and we refer to the isolated regions such that |ψ | ≤ 0.5 as the core regions of the
vortices and the diameters of these regions are referred to as the core sizes that are related
to the coherence length of the material sample.

Development of a vortex lattice in the deterministic case. Recall that as vortices form
through time, they nucleate at the sides of the sample and move toward the center. The vortex
lattice then rotates into an Abrikosov lattice as seen in Fig. 1, which is for a homogeneous,
isotropic, two-dimensional superconducting material of size 20ξ × 20ξ in a perpendicular
magnetic field of magnitude 0.5κ . (Recall that all variables have been appropriately nondi-
mensionalized.) Here, ξ denotes the Ginzburg–Landau coherence length. In the steady-state
configuration, which minimizes the Gibbs free energy, the vortices are circular in shape,
are stationary in the sample, and form a regular, triangular pattern.

Development of a quasi-steady-state vortex lattice in the space–time-independent additive
noise case. When additive noise is simulated, we randomly sampled the noise values at
all time steps and at all grid points using independent random variables having a Gaussian
distribution of zero mean. When a given noise with variance 2 is added to the same material
sample as that considered in Fig. 1, the lattice no longer rotates into a steady-state lattice.
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FIG. 1. Time evolution of the magnitude of the order parameter in a 20ξ × 20ξ homogeneous, isotropic
sample with no noise; the bottom right figure is the steady-state configuration. A rotation of the lattice occurred
between the last two figures.

Instead, the vortices vibrate in the sample until a lattice similar to the lattice in Fig. 1 is
formed; see Fig. 2. A lattice is recognizable in this sample, but a true steady state as seen
in Fig. 1 is not achieved since the shapes of the vortices are distorted and the vortices are
constantly in motion. However, with this small variance of 2, the vortices do try to form a
regular, triangular pattern in the sample. We refer to the situation in which a persistent lattice
is recognizable, but a true steady state is not achieved as a quasi-steady-state configuration.
(We will discuss this notion further in Section 6.) Note that due to the presence of the
additive noise, the vortices are no longer circular but that the core sizes are about the same,
not only from one vortex to another, but also for the same vortex from one time instant to
another.

FIG. 2. Time evolution of the magnitude of the order parameter with space–time-independent additive noise
of variance 2 in a 20ξ × 20ξ sample. The bottom right figure corresponds to a snapshot of the quasi-steady-state
configuration, i.e., one for which the motion of the vortices is essentially a vibration of their core regions.



GINZBURG–LANDAU SUPERCONDUCTIVITY MODEL 55

FIG. 3. Steady-state vortex lattice with no thermal fluctuations in a 20ξ × 20ξ sample.

Since the forcing function η is random, different computational runs can result not only
in different evolutionary histories, but also in different persistent vortex lattice patterns
that appear after marching through time. For example, during the time evolution when the
vortices enter the sample, the presence of noise can inhibit some vortices from entering.
Three computational runs were performed with the same material, the same magnetic field,
and the same variance of 2 for the additive noise. Three different quasi-steady states were
observed in the separate computations; these correspond to noise terms η that are three
different realizations of the same random Gaussian distribution. One can compare the
steady-state lattice in Fig. 3 for the no noise case to the three realizations of the quasi-
steady-state vortex lattices in Fig. 4. The middle configuration of Fig. 4 for the additive
noise case has the same number of vortices as that for the no noise case of Fig. 3, but the
lattice is rotated 90◦. The left and right plots of Fig. 4 display lattices that only have 23
vortices compared to the 24 vortices in the steady-state lattice without noise (see Fig. 3). One
vortex is inhibited from entering the material during the nucleation process at the boundary
of the sample due to the presence of noise in the model. The two lattices with 23 vortices
are similar to each other with a relative 90◦ rotation of the lattice structure.

Effect of increasing the variance. As was mentioned previously, the variance is inversely
related to the difference between the temperature and the critical temperature of transition
between the superconducting and normal states. The closer one is to the critical temperature,
the greater are the effects of thermal fluctuations and, in the nondimensionalized models we
are using, the larger is the variance of the noise term. In Fig. 5, snapshots taken at the same
instant of time for different values of the variance are compared for a 20ξ × 20ξ sample.
The upper-left plot is for zero variance, i.e., the deterministic case. The remaining plots
result from a series of calculations with variances equal to 1, 2, . . . , 10. At first, vortices are
recognizable and a vortex lattice is seen in the material. As the temperature is increased (and
correspondingly, the variance as well), the vortices are no longer recognizable and neither is
a vortex lattice. In Fig. 6, we give a similar set of plots for a three-dimensional computation.

FIG. 4. Three realizations of the quasi-steady-state vortex lattice in the presence of additive noise in a
20ξ × 20ξ sample. All realizations are for the same variance of 2 for the additive noise.
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FIG. 5.Snapshots in time of the magnitude of the order parameter for a 20ξ×20ξsample with space–time-
independent additive noise having variances of 0 to 10. All snapshots are taken at the same time instant.

FIG. 6.Snapshots taken at the same time instant of the magnitude of the order parameter for a 15ξ×15ξ×15ξsample with space–time-independent additive noise having variances=0,2,5,7,8, and 15.
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The variance parameter controls the level of noise that is added to the time-dependent
Ginzburg–Landau equations. As the variance increases, the vortices are more distorted and
eventually vortices are not recognizable. As was seen in Fig. 4, different quasi-steady states
can arise from calculations with the same variance level due to different realizations of the
stochastic process that models, e.g., thermal fluctuations. However, although for the same
value of the variance the details of the different realizations may vary (even the number
of vortices may be different), the level of distortion of the vortices and the vortex lattices
are very similar; e.g., the level of disorder of the individual vortices and of the lattice are
similar.

The results of the numerical simulations are in qualitative agreement with the experimen-
tal results of [17]. It is, of course, well known (see, e.g., [22]) that for a fixed value of the
applied field, as the temperature is increased, there is a transition from the Abrikosov state
(a regular, triangular lattice of vortices) to the normal state (in which superconductivity is
suppressed so that |ψ | = 0). In [17], convincing evidence was presented that due to thermal
fluctuations, this transition is not a sharp transition. Indeed, before superconductivity is
completely suppressed, the regular vortex lattice of the Abrikosov state (the vortex-glass
state) is first disordered into the vortex-liquid state for which no lattice is recognizable.
From Figs. 5 and 6, we see that this is exactly what happens in the numerical simulations as
the value of the variance is increased, i.e., as the temperature approaches the transition tem-
perature. For low values of the variance, a recognizable lattice of vortices persists; however,
for high values of the variance, i.e., for temperatures close to the transition temperature, the
vortex lattice is destroyed although superconductivity, i.e., points in the sample for which
|ψ | �= 0, persist.

One other important feature of the experimental results of [17] is also present in the
numerical simulations. In [17], the experimental data showed that for a constant applied
magnetic field, the vortex-liquid state occurred over a narrow range (relative to the transition
temperature itself) of temperatures near the transition temperature. Thus, the vortex-glass
state, i.e., the recognizable lattice of discrete vortices, persisted for temperatures quite near
the transition temperature and that the vortex-liquid state existed for only a narrow band of
temperatures near the transition temperature. This qualitative feature of the vortex-liquid
state is also present in the numerical simulations. For example, from Fig. 5, we see that the
vortex lattice remains recognizable up to values of the variance of about 5; this corresponds
to the vortex-liquid state existing for a band of temperatures of approximately 0.2 K near
the transition temperature; this is in rough agreement with the experimental results of [17].

5. COMPUTATIONS INVOLVING MULTIPLICATIVE NOISE

We next present some computational simulations for the multiplicative noise case dis-
cussed in Section 2.2.

Space–time-independent multiplicative noise. We first consider noise that is indepen-
dent in space–time so that the discretized noise is essentially sampled on the same grid as
that used for the discretization of the Ginzburg–Landau equations. In spatial directions, the
size of this grid is much smaller than a coherence length.

The material sample has dimension 10ξ × 10ξ and the applied field H = curl A = 0.5κ .
(Recall that all variables have been appropriately nondimensionalized.) Contour plots of
the magnitude of the order parameter are given in Figs. 7 and 8 for values of the variances
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FIG. 7. Level curves of the magnitude of the order parameter for a 10ξ × 10ξ sample with space–time-
independent multiplicative noise having variance = 4 at times = 5, 20, 60, 120, 180, 240, 300, and 360.

equal to 4 and 8, respectively. Again, only contour curves corresponding to |ψ | ≤ 0.5 are
shown. For comparison purposes, in Fig. 9, we present the contour plots of the magnitude
of the order parameter for the deterministic high-κ model. There are noticeable decreases
in core sizes for larger values of the variance while the relative motion of the centers of the
vortices are less dramatic than for the additive noise case.

Correlated multiplicative noise. We next consider some computations for multiplicative
noise in which the noise is sampled on a space–time grid of the scale of a coherence length,
i.e., one much coarser than that used to discretize the Ginzburg–Landau equations. Some
interesting phenomena develop as the less frequent sampling decreases the variations of the
coefficients in the source term and thus gives rise to the change of the effective coherence
length over time and space. One can observe that the cores of the vortices undergo constant
expansion and shrinkage. For example, consider Figs. 10 and 11 in which a 15ξ × 15ξ

sample with multiplicative noise sampled over a lattice of dimension of a coherence length
is considered. In Fig. 10, we follow the nucleation of vortices at the boundary of the sample
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FIG. 9. Level curves of the magnitude of the order parameter for a 10ξ × 10ξ sample with no noise at time =
1, 5, 10, 15, 25, 95 and the steady state.

and the subsequent migration of the vortices to their quasi-steady-state positions. In Fig. 11,
we follow the vortices after the quasi-steady state has been established. We see that not only
are the vortex centers moving significantly, but also that the sizes of the vortex cores change
dramatically in time. Furthermore, at the same time, different vortices can have widely
different core sizes.

We note that these calculations with multiplicative noise with long-range order may be
most relevant to modeling the effect of random inhomgenieties in the material sample; in
this case, randomness occurs over scales that may be comparable to the coherence length
and therefore may be modeled by sampling over lattices that are large with respect to the

FIG. 10. Level curves of the magnitude of the order parameter for a 15ξ × 15ξ sample with multiplicative
noise having long-range order during the vortex nucleation process.
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FIG. 11. Level curves of the magnitude of the order parameter for a 15ξ × 15ξ sample with multiplicative
noise having long-range order after a quasi-steady-state lattice has been established.

grid lengths used in the computations. Of course, inhomogenieties in the material sample
cause the pinning of the vortex lattice so that by modeling random inhomegenieties, one is
also modeling pinning effects in inhomogeneous superconductors.

6. LARGE TIME BEHAVIOR

A question remains to be answered: can the vortex lattice that appears in the time evolution
of superconductors under the presence of noise be considered to be a type of steady-state
lattice, at least on average?

In Figs. 12 and 13, we present the free energy vs time for simulations of both the additive
and multiplicative noise cases, respectively, for a 10ξ × 10ξ sample; variances of 4, 8, and
16 are considered for the noise. (Throughout this section, both multiplicative and additive
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FIG. 12. The Gibbs free energy vs time for the additive noise case in a 10ξ × 10ξ sample with variances = 4,
8, and 16.
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FIG. 13. The Gibbs free energy vs time for the multiplicative noise case in a 10ξ × 10ξ sample with
variances = 4, 8, and 16.

noise functions are considered to be independent in space and time so that the discretized
noise is sampled essentially on the same space–time grid as that used to discretize the
differential equations.) In Fig. 14, we give the free energy vs time for the no noise case.
Comparing Figs. 12 and 13 with Fig. 14, we see that in the presence of noise, the random
motion of the vortices results in oscillations in the value of the free energy. (The ordinates
of all the plots in Figs. 12–14 have the same scaling factors of 25 units.) The much larger
oscillations associated with the multiplicative noise cases are perhaps due to the dramatic
change of core sizes and for the case of variance being equal to 16, the largest magnitude
of the order parameter can be as high as 1.6, compared with 1 being the upper bound in the
deterministic case.

We may, however, define the quasi-steady state as a state in which the vortices are
on average in a steady-state lattice. Given a pathwise solution f = f (t), the averages
f̄ T = f̄ (t) are taken over time intervals of the form [t + jT, t + ( j + 1)T ] for some T
of reasonable length. On the other hand, we define f̂ (t) to be the steady-state solution
of the corresponding noiseless dynamic equations with f (t) as the initial condition (or
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FIG. 14. The Gibbs free energy vs time for the no noise case (variance = 0) in a 10ξ × 10ξ sample.
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FIG. 15lComparison of quasi-steady-state lattices to steady-state lattices in a 20��20�sample for additive
noise having variance 2. Each of the snapshots of the computation with noise in the upper row were used as an
initial condition for a deterministic computation. In each case, the latter achieved a steady state which is depicted
in the bottom rowlequivalently, we continue solving the equations forfafter timetwith the noise being

Òturned offÓand let time go to inÞnity). If asjgoes to inÞnity, the averaged solutionøfT
t�approaches the noiseless steady state öf
t�, then we say the solutionfis in aquasi-steady
state. In materials or at temperatures resulting in small varianceßuctuations, a quasi-steady

statecan be seen since the vortices are allowed to be in constant motion with their averageposition deÞning thequasi-steady-statelattice.One can show that the three vortex lattices in Fig. 4 are quasi-steady states. In fact, byshutting off the noises at large time, the steady states match with some local minimizers ofthe Gibbs free energy with the given number of vortices present in the superconductor. Onecan compare the steady-state lattice obtained from these calculations to the vortex latticesthat appear under the presence of noise. In Fig. 15, one can see that the vortices in the modelswith noise are on average in the correct lattice formation. The top row of plots correspondsto the same nondimensional time in three different computations with the variance set to2. The bottom row of plots corresponds to the resulting steady-state lattices observed afternoise isÒturned offÓin the three previous computations. Thus, the three vortex latticesobtained from different realizations of the time evolution with noise having a variance of 2can be classiÞed as leading to a quasi-steady state.Note that in [14], the average position of vortices is determined by averaging the equationsthat determine the movement of vortices, i.e., equations involving�andA. The resultingequations are necessarily stochastic in nature meaning that the position of vortices in asample at a particular timetis not completely determined by the initial condition of thesample att�0.7. THE LARGE TIME BEHAVIOR AND THE SMALL VARIANCE LIMITWe now consider some theoretical issues related to the stochastic models we have beenusing. We refer to [1, 3, 4, 12, 19] for more comprehensive mathematical treatments ofstochastic partial differential equations.
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Let H = L2(�) be the space of all square integrable complex-valued functions defined
on �. Assuming that A is smoothly defined and uniformly bounded, it is easy to check that
the differential operator Â0 defined by (10) on the domain

D( Â0) = {u ∈ H 2(�)(the complex version) and u satisfying (11)}

can be extended to Â0 : V → V ∗ with V = D( ÂI/2
0 ), where V ∗ denotes the dual space. Let

〈. ,.〉 be the duality pairing between V and V ∗ which is equivalent to the scalar product in
H. It is easy to see that Â0 is an operator with

‖ Â0‖L(V,V ∗) ≤ a1

for some constant a1 and

〈u, Â0u〉 ≥ 0

for any u ∈ V . We use the standard notation ‖ · ‖ for the standard L2 norm in H.
Given a complete probability space (�,F, P), and an increasing filtration of σ -fields

Ft⊂F containing all P-null sets of �, let M2
T (V ) denote the space of all V -valued mea-

surable processes u satisfying

u(t, .) isFt − measurable and E
∫ T

0
‖u(t, ω)‖2

V dt is finite.

Let W (t), t ≥ 0 be a H-valued Wiener process with covariance operator Q, which is a
Hilbert–Schmidt operator. For the sake of theoretical investigations, we also assume that
the trace of Q is finite. Naturally, these assumptions limit the types of noises to which the
theoretical results given here are applicable.

We can consider stochastic differential equations of the form

du(t) = A(u(t)) dt + B(u(t)) dW (t) (21)

and the solution refers to the process u ∈ M2
T (V ) that satisfies the above equation and a

suitable initial condition.
Based on the theory given in [18], with Hilbert spaces V ⊂H⊂ V ∗ and V compactly

embedded inH, it follows that there exists a unique solution {uϕ, t ≥ 0} of the equation (21)
such that

uϕ ∈ L2(�, C(0, T ;H)) ∩ M2
T (V )

under the following assumptions: there exist α > 0, λ, and γ such that ∀v ∈ V

2〈v, A(v)〉 + tr(B(v)Q B∗(v)) ≤ λ‖v‖2
H − α‖v‖2

V + γ

and ∀u, v ∈ V

2〈(u − v, A(u) − A(v))〉 + tr((B(u) − B(v))Q(B(u) − B(v))∗) ≤ λ‖u − v‖2
H,

where 〈 , 〉 denotes the duality pairing for V and V ∗.
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The solution of the additive stochastic high-κ model refers to the process uσ ∈ M2
T (V )

that satisfies Eq. (21) with A = Â0 + F and B(u) = σ for u ∈ V while the multiplicative
case corresponds to A = Â0 + F and B(u) = σu. Using the monotonicity of the nonlinear
function F and the coercivity of Â0, one can easily verify that the conditions for the
existence and uniqueness of solutions are satisfied. Moreover, it is easy to see that Eqs. (7)
and (12) can be respectively classified as dissipative equations with additive noise and
linear multiplicative noise [4] and consequently the existence and uniqueness of generalized
solutions to the stochastic equations can be established.

It also follows from [4] that, for the additive noise case, there exists one unique invariant
measure for (7). One may also study the small variance limits; that is, let u0(t) ∈ V be the
solution to the deterministic differential equation

du0(t) = Â(u0(t)) dt (22)

with initial condition (8)—i.e., u(t) = ψ(t), the solution given by (1). Then, for the error
e(t) = uσ (t) − u0(t), we have

de(t) = [ Â(e(t) + u0(t)) − Â(u0(t))] dt + B(e(t) + u0(t)) dW (t). (23)

Applying the techniques given in [4], one can show that as the parameter σ goes to zero,

E‖e(t)‖2 → 0 as ω → 0.

We give a brief proof for such a result based on the well-known Ito formula [4, 18]. Let
� :H → R be a function satisfying:

1. � is twice (Frechet) differentiable with � ′ and � ′′ locally bounded;
2. �, � ′ are continuous on H;
3. for all trace class operators P , tr(P� ′(·)) is continuous for each v∗ ∈ V ∗;
4. ‖� ′(v)‖V ≤ C0(1 + ‖v‖V ) for some C0 > 0, ∀v ∈ V .

Then,

THEOREM 7.1 (Ito’s formula). Suppose � :H → R satisfies the above conditions and
{uϕ(t), t ≥ 0} is a solution of (21) with uϕ ∈ L2(�, C(0, T ; H)) ∩ M2(0; T ; V ).

Then,

�(uϕ(t)) = �(uϕ(0)) +
∫ t

0
L�(uϕ(s)) ds +

∫ t

0
(� ′(uϕ(s)), B(uϕ(s)) dW (s)),

where L�(u) = 〈� ′(u), A(u)〉 + 1
2 tr(� ′′(u)B(u)Q B∗(u)), and Q is the covariance.

We now take �(e) = ‖e‖2, and for the additive noise case, it is straightforward to check
that

L�(uϕ(s)) = 2Re

{∫
�

〈e(s), a(e, s)〉 d�

}
+
∫

�

ω2 trQ d�,

where a(e, s) = Â0(e(t)) + F(u0(t) + e(t)) − F(u0(t)). Meanwhile, it is also easy to ob-
tain that

Re{(F(uσ ) − F(u0), uσ − u0)} ≥ 0 (24)
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and

Re{〈e, Â0(e)〉} ≤ ‖e‖2. (25)

Thus, we have

E(‖e(t)‖2) = E

(
‖e(0)‖2 +

∫ t

0
‖e(s)‖2 ds + σ

∫ t

0
e(s) dW (s)

)
. (26)

As the initial conditions for uσ and u are the same, we get e(0) = 0. By the Birkholder–
Gundy inequality [1], we have

σE

(∫ t

0
e(s) dW (s)

)
≤ cσ 2 tr(Q) + E

(∫ t

0
‖e(s)‖2 ds

)

for some positive constant c. So,

E(‖e(t)‖2) ≤ E

(∫ t

0
‖e(s)‖2 ds

)
+ cσ 2 tr(Q). (27)

Using Fubini’s theorem to switch integration order, we arrive at

E(‖e(t)‖2) ≤
∫ t

0
E(‖e(s)‖2) ds + cσ 2 tr(Q). (28)

Then, by the Gronwall’s inequality, we have the following results.

THEOREM 7.2. Let u0(t) be the solution to the deterministic differential equation (22)
and let uσ (t) be the solution to the stochastic differential equation (7). Then, for any T > 0,

sup
t∈[0,T ]

E‖uσ (t) − u0(t)‖2 ≤ Cσ 2 tr(Q) for some constant C

and, consequently,

sup
t∈[0,T ]

E‖uσ (t) − u0(t)‖2 → 0 as σ → 0.

The case for the multiplicative noise is more involved and we omit the details. The above
theorem establishes the relations between the time evolution of the deterministic model
and the model with the noise effects. It confirms, to a certain degree, the observations we
made from the numerical simulations for the additive noise case presented earlier; i.e., as
the variance parameter σ gets smaller, the quasi-steady-state lattice that develops in the
presence of noise converges to the steady-state lattice obtained in calculations without noise.
We observe that, rigorously speaking, the noise we have taken in the numerical experiments
does not strictly simulate the Wiener process W (t) whose covariance operator is of trace
class in H.



66 DEANG, DU, AND GUNZBURGER

8. SUMMARY AND CONCLUSIONS

Computationally, the effects of thermal fluctuations or random defects are evident in
contour plots of the density of superconducting electrons since vortices are in constant
motion, the vortices are distorted, and the resulting vortex lattice is also distorted. With
small variances and at large times, the vortices seem to be at an equilibrium where each
vortex is on the average at a fixed position in the sample. When noise is subsequently
suppressed at this quasi-steady state, the resulting vortex lattice evolves into a steady-state
configuration for the sample with respect to the number of vortices present in the material.
Although a sample can have several different steady-state lattice structures corresponding
to different realizations of the same stochastic process with a given variance, each lattice is a
quasi-steady state. Thus, the lattice symmetry and regularity seen in pure materials without
thermal fluctuations or random defects are still seen with the addition of noise in our model.
We also observe that while additive noise tends to make the positions of vortices vibrate,
multiplicative noise (having long-range order) tends to alter the core sizes of the vortices,
which is even more apparent when discrete lattice random functions are used.

Theoretically, it is also shown that as the variance approaches zero, the solution of the
stochastic high-κ time-dependent Ginzburg–Landau equations approaches the solution of
the deterministic high-κ time-dependent Ginzburg–Landau equations. When the variance
decreases to zero, the level of noise introduced to the stochastic time-dependent Ginzburg–
Landau equation goes to zero. Intuitively, as the level of noise goes to zero, the resulting
values of ψ at the steady state should approach the values obtained without fluctuations.
Therefore, this theoretical result is reflected in the computational studies of quasi-steady-
state lattices.

While in the present paper most of the numerical examples involve relatively few vortices,
it is also of great physical interest to pursue further study in the future on the effect of thermal
fluctuation when a large number of vortices are present. Another avenue for future work is
to include the effects of applied currents; this would allow for the study of the pinning of
the vortex lattice due to random inhomogenieties in the material sample and of the critical
current at which depinning takes place.
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